
Thème 3 : Matériaux Sous-thème 1 : Cycle de vie Séance 3.1.3.

Recyclage de solutions métalliques

Au cours d'un TP de chimie, les élèves ont versé dans le bidon « recyclage métaux » une solution de chlorure de fer (III) et une solution de sulfate de cuivre (II). Comment traiter ce mélange afin de séparer les cations Fe³⁺ des cations Cu²⁺?

I. <u>Précipitation des ions fer (III) :</u>

- Réaliser le montage ci-contre.
- Introduire dans la burette une solution aqueuse d'hydroxyde de sodium de concentration en soluté apporté égale à c_B = 0,5 mol.L⁻¹.
- Introduire dans le becher 10,0 mL de solution aqueuse de chlorure de fer (III) de concentration en soluté apporté égale à 0,2 mol.L⁻¹ et y ajouter 10,0 mL d'eau distillée.
- Étalonner le pH-mètre.
- Mesurer le pH initial.
- Verser ensuite l'hydroxyde de sodium d'abord **goutte à goutte :** noter le pH d'apparition du précipité.
- Mettre l'agitation en marche.
- Dans regressi, obtenir la courbe pH = f (V_B) pour des ajouts _I successifs de soude mL par mL.

Q2. Comment expliquez-vous le saut de pH?

Q3. Sur axe gradué horizontal de pH, reporter : - le pH de

- le pH de précipitation débutante,

0

burette

pH-mètre

turbulent

agitateur

magnétique

рΗ

- le pH de début de saut.

Indiquer sur cet axe l'espèce prédominante entre Fe³⁺(aq) et Fe(HO)_{3 (s)}.

II. Précipitation des ions cuivre(II) :

On utilise le même dispositif expérimental, mais l'expérience n'est pas réalisée.

Dans un becher contenant 10,0 mL de solution de sulfate de cuivre(II): $Cu^{2+}_{(aq)} + SO_4^{2-}_{(aq)}$ de concentration en soluté apporté $c_2 = 0,2$ mol.L⁻¹ et 10,0 mL d'eau distillée, on verse de l'hydroxyde de sodium à l'aide d'une burette.

Les résultats expérimentaux sont regroupés dans le tableau ci-dessous :

Le pH de la solution de sulfate de cuivre(II) vaut initialement 4,5.

Le précipité se forme dès l'ajout de la première goutte de soude. Le pH vaut alors 4,6.

On obtient la courbe pH = f(V_B) cicontre.

- **Q4.** Écrire l'équation de la réaction modélisant la formation du précipité d'hydroxyde de cuivre(II).
- **Q5.** Sur axe gradué de pH, reporter : le pH de précipitation débutante,
 - le pH de début de saut.

Indiquer sur cet axe l'espèce prédominante entre Cu²⁺(aq) et Cu(HO)_{2 (s)}.

III. Séparation des ions cuivre (II) et fer (III) :

• Préparation d'une solution fictive contenue dans le bidon « recyclage des métaux » : Introduire dans un becher 10,0 mL de solution de chlorure de fer (III) à 0,2 mol.L⁻¹ et 10,0 mL de solution de sulfate de cuivre (II) à 0,2 mol.L⁻¹.

Question préliminaire:

Regrouper sur un même axe gradué les réponses Q3&Q5.

- Proposer au professeur un protocole expérimental permettant d'obtenir une solution aqueuse d'ions Cu^{2+} et une solution aqueuse d'ions Fe^{3+} à partir du mélange initial. En plus du matériel visible sur votre paillasse et des solutions précédentes, on dispose d'une solution aqueuse d'acide chlorhydrique $H_3O^+_{(aq)} + Cl^-_{(aq)}$ à c=1 mol.L⁻¹.
- Réaliser ce protocole.

Q6. Décrire ce protocole et expliquer l'intérêt de chaque opération.